Skip to main content
Version: 2.1.0

Sort Extension Connector

Overview

InLong Sort is an ETL service based on Apache Flink SQL, the powerful expressive power of Flink SQL brings high scalability and flexibility. Basically, the semantics supported by Flink SQL are supported by InLong Sort. In some scenarios, when the built-in functions of Flink SQL do not meet the requirements, they can also be extended through various UDFs in InLong Sort. At the same time, it will be easier for those who have used SQL, especially Flink SQL, to get started.

This article describes how to extend a new source (abstracted as extract node in inlong) or a new sink (abstracted as load node in inlong) in InLong Sort. The architecture of inlong sort can be represented by UML object relation diagram as:

sort_UML

The concepts of each component are:

NameDescription
Groupdata flow group, including multiple data flows, one group represents one data access
Streamdata flow, a data flow has a specific flow direction
GroupInfoencapsulation of data flow in sort. a groupinfo can contain multiple dataflowinfo
StreamInfoabstract of data flow in sort, including various sources, transformations, destinations, etc.
Nodeabstraction of data source, data transformation and data destination in data synchronization
ExtractNodesource-side abstraction for data synchronization
TransformNodetransformation process abstraction of data synchronization
LoadNodedestination abstraction for data synchronization
NodeRelationShipabstraction of each node relationship in data synchronization
FieldRelationShipabstraction of the relationship between upstream and downstream node fields in data synchronization
FieldInfonode field
MetaFieldInfonode meta fields
Functionabstraction of transformation function
FunctionParaminput parameter abstraction of function
ConstantParamconstant parameters

Extending Extract & Load Node

The Extract nodes is a set of Source Connectors based on Apache Flink® used to extract data from different source systems. The Load nodes is a set of Sink Connectors based on Apache Flink® used to load data into different storage systems.

When Apache InLong Sort starts, it translates a set of Extract and Load Node configurations into corresponding Flink SQL and submits them to the Flink cluster, initiating the data extraction and loading tasks specified by the user.

Adding Extract & Load Node Definitions

To customize an Extract Node, you need to inherit the org.apache.inlong.sort.protocol.node.ExtractNode class, and to customize a Load Node, you need to inherit the org.apache.inlong.sort.protocol.node.LoadNode class. Both must selectively implement methods from the org.apache.inlong.sort.protocol.node.Node interface.

Method NameMeaningDefault Value
getIdGet node IDInlong StreamSource Id
getNameGet node nameInlong StreamSource Name
getFieldsGet field informationFields defined by Inlong Stream
getPropertiesGet additional node propertiesEmpty Map
tableOptionsGet Flink SQL table propertiesAdditional node properties
genTableNameGenerate Flink SQL table nameNo default value
getPrimaryKeyGet primary keynull
getPartitionFieldsGet partition fieldsnull

Extend Extract Node

There are three steps to extend an ExtractNode:

Step 1:Inherit the ExtractNode class,the location of the class is:

inlong-sort/sort-common/src/main/java/org/apache/inlong/sort/protocol/node/ExtractNode.java

Specify the connector in the implemented ExtractNode.

// Inherit ExtractNode class and implement specific classes, such as MongoExtractNode
@EqualsAndHashCode(callSuper = true)
@JsonTypeName("MongoExtract")
@Data
public class MongoExtractNode extends ExtractNode implements Serializable {
@JsonInclude(Include.NON_NULL)
@JsonProperty("primaryKey")
private String primaryKey;
...

@JsonCreator
public MongoExtractNode(@JsonProperty("id") String id, ...) { ... }

@Override
public Map<String, String> tableOptions() {
Map<String, String> options = super.tableOptions();
// configure the specified connector, here is mongodb-cdc
options.put("connector", "mongodb-cdc");
...
return options;
}
}

Step 2:add the Extract to JsonSubTypes in ExtractNode and Node

// add field in JsonSubTypes of ExtractNode and Node
...
@JsonSubTypes({
@JsonSubTypes.Type(value = MongoExtractNode.class, name = "mongoExtract")
})
...
public abstract class ExtractNode implements Node{...}

...
@JsonSubTypes({
@JsonSubTypes.Type(value = MongoExtractNode.class, name = "mongoExtract")
})
public interface Node {...}

Step 3:Expand the Sort connector and check whether the corresponding connector already exists in the (InLong Agentinlong-sort/sort-connectors/mongodb-cdc) directory. If you haven't already, you need to refer to the official flink documentation DataStream Connectors to extend, directly call the existing flink-connector (such asinlong-sort/sort-connectors/mongodb-cdc) or implement the related connector by yourself.

Extend Load Node

There are three steps to extend an LoadNode:

Step 1:Inherit the LoadNode class, the location of the class is:

inlong-sort/sort-common/src/main/java/org/apache/inlong/sort/protocol/node/LoadNode.java

specify the connector in the implemented LoadNode.

// Inherit LoadNode class and implement specific classes, such as KafkaLoadNode
@EqualsAndHashCode(callSuper = true)
@JsonTypeName("kafkaLoad")
@Data
@NoArgsConstructor
public class KafkaLoadNode extends LoadNode implements Serializable {
@Nonnull
@JsonProperty("topic")
private String topic;
...

@JsonCreator
public KafkaLoadNode(@Nonnull @JsonProperty("topic") String topic, ...) {...}

// configure and use different connectors according to different conditions
@Override
public Map<String, String> tableOptions() {
...
if (format instanceof JsonFormat || format instanceof AvroFormat || format instanceof CsvFormat) {
if (StringUtils.isEmpty(this.primaryKey)) {
// kafka connector
options.put("connector", "kafka");
options.putAll(format.generateOptions(false));
} else {
options.put("connector", "upsert-kafka"); // upsert-kafka connector
options.putAll(format.generateOptions(true));
}
} else if (format instanceof CanalJsonFormat || format instanceof DebeziumJsonFormat) {
// kafka-inlong connector
options.put("connector", "kafka-inlong");
options.putAll(format.generateOptions(false));
} else {
throw new IllegalArgumentException("kafka load Node format is IllegalArgument");
}
return options;
}
}

Step 2:add the Load to JsonSubTypes in ExtractNode and Node

// add field in JsonSubTypes of LoadNode and Node
...
@JsonSubTypes({
@JsonSubTypes.Type(value = KafkaLoadNode.class, name = "kafkaLoad")
})
...
public abstract class LoadNode implements Node{...}

...
@JsonSubTypes({
@JsonSubTypes.Type(value = KafkaLoadNode.class, name = "kafkaLoad")
})
public interface Node {...}

Step 3:Extend the Sort connector, Kafka's sort connector is in inlong-sort/sort-connectors/kafka.

Integrate Entrance

To integrate extract and load into the InLong Sort mainstream, you need to implement the semantics mentioned in the overview section: group, stream, node, etc. The entry class of InLong Sort is in :

inlong-sort/sort-core/src/main/java/org/apache/inlong/sort/Entrance.java

How to integrate extract and load into InLong Sort can refer to the following ut. First, build the corresponding extractnode and loadnode, then build noderelation, streaminfo and groupinfo, and finally use FlinkSqlParser to execute.

public class MongoExtractToKafkaLoad extends AbstractTestBase {

// create MongoExtractNode
private MongoExtractNode buildMongoNode() {
List<FieldInfo> fields = Arrays.asList(new FieldInfo("name", new StringFormatInfo()), ...);
return new MongoExtractNode(..., fields, ...);
}

// create KafkaLoadNode
private KafkaLoadNode buildAllMigrateKafkaNode() {
List<FieldInfo> fields = Arrays.asList(new FieldInfo("name", new StringFormatInfo()), ...);
List<FieldRelation> relations = Arrays.asList(new FieldRelation(new FieldInfo("name", new StringFormatInfo()), ...), ...);
CsvFormat csvFormat = new CsvFormat();
return new KafkaLoadNode(..., fields, relations, csvFormat, ...);
}

// create NodeRelation
private NodeRelation buildNodeRelation(List<Node> inputs, List<Node> outputs) {
List<String> inputIds = inputs.stream().map(Node::getId).collect(Collectors.toList());
List<String> outputIds = outputs.stream().map(Node::getId).collect(Collectors.toList());
return new NodeRelation(inputIds, outputIds);
}

// test the main flow: mongodb to kafka
@Test
public void testMongoDbToKafka() throws Exception {
EnvironmentSettings settings = EnvironmentSettings. ... .build();
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
...
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, settings);
Node inputNode = buildMongoNode();
Node outputNode = buildAllMigrateKafkaNode();
StreamInfo streamInfo = new StreamInfo("1", Arrays.asList(inputNode, outputNode), ...);
GroupInfo groupInfo = new GroupInfo("1", Collections.singletonList(streamInfo));
FlinkSqlParser parser = FlinkSqlParser.getInstance(tableEnv, groupInfo);
ParseResult result = parser.parse();
Assert.assertTrue(result.tryExecute());
}
}

Additionally, Sort has added two extra interfaces, InlongMetric and Metadata, to support richer semantics.

InlongMetric

If a custom node needs to report Inlong metrics, it must implement the org.apache.inlong.sort.protocol.InlongMetric interface. When Sort parses the configuration, it adds the startup parameter 'inlong.metric.labels' = 'groupId={g}&streamId={s}&nodeId={n}' to the table option, which is used to configure Inlong Audit. For details, see How to Integrate Inlong Audit into Custom Connector

Metadata

If a custom node needs to specify a field as a Flink SQL Metadata field, it must implement the org.apache.inlong.sort.protocol.Metadata interface. Sort will automatically mark the corresponding field as Metadata when parsing the configuration.

Sort is implemented based on Apache Flink version 1.15. For information on how to extend the Apache Flink Connector, refer to User-defined Sources & Sinks

How to Integrate Inlong Audit into Custom Connector

Inlong Sort encapsulates the metric reporting process in the org.apache.inlong.sort.base.metric.SourceExactlyMetric and org.apache.inlong.sort.base.metric.SinkExactlyMetric classes. Developers only need to initialize the corresponding Metric object according to the Source/Sink type to implement metric reporting.

The common practice is to pass parameters such as the InLong Audit address when constructing the Source/Sink, and initialize the SourceExactlyMetric/SinkExactlyMetric object when calling the open() method to initialize the Source/Sink operator. After processing the actual data, call the corresponding audit reporting method.

public class StarRocksDynamicSinkFunctionV2<T> extends StarRocksDynamicSinkFunctionBase<T> {

private static final long serialVersionUID = 1L;
private static final Logger log = LoggerFactory.getLogger(StarRocksDynamicSinkFunctionV2.class);

private transient SinkExactlyMetric sinkExactlyMetric;

private String inlongMetric;
private String auditHostAndPorts;
private String auditKeys;
private String stateKey;

public StarRocksDynamicSinkFunctionV2(StarRocksSinkOptions sinkOptions,
TableSchema schema,
StarRocksIRowTransformer<T> rowTransformer, String inlongMetric,
String auditHostAndPorts, String auditKeys) {
this.sinkOptions = sinkOptions;

// pass the params of inlong audit
this.auditHostAndPorts = auditHostAndPorts;
this.inlongMetric = inlongMetric;
this.auditKeys = auditKeys;
}

@Override
public void open(Configuration parameters) {

// init SinkExactlyMetric in open()
MetricOption metricOption = MetricOption.builder().withInlongLabels(inlongMetric)
.withAuditAddress(auditHostAndPorts)
.withAuditKeys(auditKeys)
.build();

if (metricOption != null) {
sinkExactlyMetric = new SinkExactlyMetric(metricOption, getRuntimeContext().getMetricGroup());
}
}

@Override
public void invoke(T value, Context context)
throws IOException, ClassNotFoundException, JSQLParserException {
Object[] data = rowTransformer.transform(value, sinkOptions.supportUpsertDelete());

sinkManager.write(
null,
sinkOptions.getDatabaseName(),
sinkOptions.getTableName(),
serializer.serialize(schemaUtils.filterOutTimeField(data)));

// output audit after write data to sink
if (sinkExactlyPropagateMetric != null) {
sinkExactlyPropagateMetric.invoke(1, getDataSize(value), schemaUtils.getDataTime(data));
}
}